共日名稱生物化學類組代碼
料目碼C07
科目碼※本項考試依簡章規定所有考科均「不可」使用計算機。本科試題共計 5 頁

A. Multiple choice question (50%, 2% each; one correct answer only)

- 1. The chirality of an amino acid results from the fact that its α carbon:
 - A) has no net charge.
 - B) is a carboxylic acid.
 - C) is bonded to four different chemical groups.
 - D) is in the L absolute configuration in naturally occurring proteins.
 - E) is symmetric.
- 2. All of the amino acids that are found in proteins, except for proline, contain a(n):
 - A) amino group.
 - B) carbonyl group.
 - C) carboxyl group.
 - D) ester group.
 - E) thiol group.
- 3. The uncommon amino acid selenocysteine has an R group with the structure —CH₂—SeH (p $K_a \approx 5$). In an aqueous solution, pH = 7.0, selenocysteine would:
 - A) be a fully ionized zwitterion with no net charge.
 - B) be found in proteins as D-selenocysteine.
 - C) never be found in a protein.
 - D) be nonionic.
 - E) not be optically active.
- 4. The first step in two-dimensional gel electrophoresis generates a series of protein bands by isoelectric focusing. In a second step, a strip of this gel is turned 90 degrees, placed on another gel containing SDS, and an electric current is again applied. In this second step:
 - A) proteins with similar isoelectric points become further separated according to their molecular weights.
 - B) the individual bands become stained so that the isoelectric focus pattern can be visualized.
 - C) the individual bands become visualized by interacting with protein-specific antibodies in the second gel.
 - D) the individual bands undergo a second, more intense isoelectric focusing.
 - E) the proteins in the bands separate more completely because the second electric current is in the opposite polarity to the first current.
- 5. Which of the following describes the overall three-dimensional folding of a polypeptide?
 - A) Primary structure
 - B) Secondary structure
 - C) Tertiary structure
 - D) Quaternary structure
 - E) None of the above
- 6. In an aqueous solution, protein conformation is determined by two major factors. One is the formation of the maximum number of hydrogen bonds. The other is the:
 - A) formation of the maximum number of hydrophilic interactions.
 - B) maximization of ionic interactions.
 - C) minimization of entropy by the formation of a water solvent shell around the protein.
 - D) placement of hydrophobic amino acid residues within the interior of the protein.
 - E) placement of polar amino acid residues around the exterior of the protein.

科目名稱生物化學類組代碼
科目碼C07
科目碼※本項考試依簡章規定所有考科均「不可」使用計算機。本科試題共計 5 頁

- 7. In the α helix the hydrogen bonds:
 - A) are roughly parallel to the axis of the helix.
 - B) are roughly perpendicular to the axis of the helix.
 - C) occur mainly between electronegative atoms of the R groups.
 - D) occur only between some of the amino acids of the helix.
 - E) occur only near the amino and carboxyl termini of the helix.
- 8. The major reason that antiparallel β -stranded protein structures are more stable than parallel β -stranded structures is that the latter:
 - A) are in a slightly less extended configuration than antiparallel strands.
 - B) do not have as many disulfide crosslinks between adjacent strands.
 - C) do not stack in sheets as well as antiparallel strands.
 - D) have fewer lateral hydrogen bonds than antiparallel strands.
 - E) have weaker hydrogen bonds laterally between adjacent strands.
- 9. In the binding of oxygen to myoglobin, the relationship between the concentration of oxygen and the fraction of binding sites occupied can best be described as:
 - A) hyperbolic.
 - B) linear with a negative slope.
 - C) linear with a positive slope.
 - D) random.
 - E) sigmoidal.
- 10. In hemoglobin, the transition from T state to R state (low to high affinity) is triggered by:
 - A) Fe²⁺ binding.
 - B) heme binding.
 - C) oxygen binding.
 - D) subunit association.
 - E) subunit dissociation.
- 11. The fundamental cause of sickle-cell disease is a change in the structure of:
 - A) blood.
 - B) capillaries.
 - C) hemoglobin.
 - D) red cells.
 - E) the heart.
- 12. The predominant structural feature in myosin molecules is:
 - A) a β structure.
 - B) an α helix.
 - C) the Fab domain.
 - D) the light chain.
 - E) the meromyosin domain.
- 13. One of the enzymes involved in glycolysis, aldolase, requires Zn²⁺ for catalysis. Under conditions of zinc deficiency, when the enzyme may lack zinc, it would be referred to as the:
 - A) apoenzyme. B) coenzyme. C) holoenzyme. D) prosthetic group. E) substrate.

 共日名稱
 生物化學
 類組代碼
 C07

 科目碼
 C0701

 ※本項考試依簡章規定所有考科均「不可」使用計算機。
 本科試題共計 5 頁

14. Which one of the following statements is true of enzyme catalysts?

- A) Their catalytic activity is independent of pH.
- B) They are generally equally active on D and L isomers of a given substrate.
- C) They can increase the equilibrium constant for a given reaction by a thousand fold or more.
- D) They can increase the reaction rate for a given reaction by a thousand fold or more.
- E) To be effective, they must be present at the same concentration as their substrate.
- 15. Which of the following statements about a plot of V_0 vs. [S] for an enzyme that follows Michaelis-Menten kinetics is *false*?
 - A) As [S] increases, the initial velocity of reaction V_0 also increases.
 - B) At very high [S], the velocity curve becomes a horizontal line that intersects the y-axis at Km.
 - C) Km is the [S] at which $V_0 = 1/2 V_{\text{max}}$.
 - D) The shape of the curve is a hyperbola.
 - E) The y-axis is a rate term with units of μm/min.
- 16. Which of the following monosaccharides is not an aldose?
 - A) erythrose
 - B) fructose
 - C) glucose
 - D) glyceraldehyde
 - E) ribose
- 17. When two carbohydrates are epimers:
 - A) one is a pyranose, the other a furanose.
 - B) one is an aldose, the other a ketose.
 - C) they differ in length by one carbon.
 - D) they differ only in the configuration around one carbon atom.
 - E) they rotate plane-polarized light in the same direction.
- 18. Which of the following is not a reducing sugar?
 - A) Fructose
 - B) Glucose
 - C) Glyceraldehyde
 - D) Ribose
 - E) Sucrose
- 19. The biological role of restriction enzymes is to:
 - A) aid recombinant DNA research.
 - B) degrade foreign DNA that enters a bacterium.
 - C) make bacteria resistant to antibiotics.
 - D) restrict the damage to DNA by ultraviolet light.
 - E) restrict the size of DNA in certain bacteria.
- 20. The PCR reaction mixture does not include:
 - A) all four deoxynucleoside triphosphates.
 - B) DNA containing the sequence to be amplified.
 - C) DNA ligase.
 - D) heat-stable DNA polymerase.
 - E) oligonucleotide primer(s).

科目名稱生物化學類組代碼
科目碼C07
C0701

※本項考試依簡章規定所有考科均「不可」使用計算機。

本科試題共計 5 頁

- 21. Which one of the following analytical techniques does *not* help illuminate a gene's cellular function?
 - A) DNA microarray analysis
 - B) Protein chip analysis
 - C) Southern blotting
 - D) Two-dimensional gel electrophoresis
 - E) Two-hybrid analysis
- 22. Hydrolysis of 1 M glucose 6-phosphate catalyzed by glucose 6-phosphatase is 99% complete at equilibrium (i.e., only 1% of the substrate remains). Which of the following statements is most nearly correct? ($R = 8.315 \text{ J/mol} \cdot \text{K}$; T = 298 K)
 - A) $\Delta G^{\prime \circ} = -11 \text{ kJ/mol}$
 - B) $\Delta G^{\prime o} = -5 \text{ kJ/mol}$
 - C) $\Delta G^{\prime o} = 0 \text{ kJ/mol}$
 - D) $\Delta G^{\prime \circ} = +11 \text{ kJ/mol}$
 - E) $\Delta G^{\prime o}$ cannot be determined from the information given.
- 23. The structure of NAD⁺ does *not* include:
 - A) a flavin nucleotide.
 - B) a pyrophosphate bond.
 - C) an adenine nucleotide.
 - D) nicotinamide.
 - E) two ribose residues.
- 24. The anaerobic conversion of 1 mol of glucose to 2 mol of lactate by fermentation is accompanied by a net gain of:
 - A) 1 mol of ATP.
 - B) 1 mol of NADH.
 - C) 2 mol of ATP.
 - D) 2 mol of NADH.
 - E) none of the above.
- 25. The conversion of 1 mol of fructose 1,6-bisphosphate to 2 mol of pyruvate by the glycolytic pathway results in a net formation of:
 - A) 1 mol of NAD⁺ and 2 mol of ATP.
 - B) 1 mol of NADH and 1 mol of ATP.
 - C) 2 mol of NAD⁺ and 4 mol of ATP.
 - D) 2 mol of NADH and 2 mol of ATP.
 - E) 2 mol of NADH and 4 mol of ATP.

科目名稱		7 .11 m 249	類組代碼		C07	
		生物化學	科目碼	C0	701	
※本項考試依簡章規定所有考科均「不可」使用計算機。		本科試題共計 5 頁				
В.	B. Assay Questions (50%):					
1.	Beriberi is a disease caused by a thiamine deficiency. People with beriberi have higher levels of pyruvate and α -ketoglutarate in blood, especially after eating a meal with rich carbohydrates. Why? (5%)					
2.	Ketone bo	Ketone bodies will be built up in people with a long fasting. Why? (5%)				
3.	Calculate t	Calculate the ATP yield for the complete oxidation of pyruvate. (5%)				
4.	Draw a dia	Draw a diagram of LDL and describe the compositions of LDL. (5%)				
5.	How does malonyl-CoA regulate the fatty acid breakdown? (5%)					
6.	List five nonessential amino acids (5%)					
7.	(a) NAD ⁺ or NADH (b) Coenzyme B ₁₂ (c) biotin (d) PLP (e) TPP (f) N ⁵ , N ¹⁰ -methylene-H ₄ folate (g) N ⁵ -methyl- H ₄ folate (h) AdoMet (i) Tetrahydrobiopterin Match the above cofactor(s) required in the reaction catalyzed by the following enzymes:					
 8. 9. 	Nucleotide the follow: (a) Second (b) Phosph (c) Activa (d) Transfe	the melting point of a fatty acid affected by the chain less play a variety of roles in the cell. Give an example of ing roles or processes. It messenger in signal transduction (1%) moryl-group transfer (1%) tion of diacylglycerol in biosynthesis of phospholipids for of electrons in beta-oxidation (1%) tion of glucose in glycogen biosynthesis (1%)	f a nucleotide t			